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torchgua

torchquad is a Python3 module for multidimensional numerical integration on the GPU. It uses autoray to support
PyTorch and other machine learning modules.

You can see the latest code at https://github.com/esa/torchquad.
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CHAPTER
ONE

GETTING STARTED

This is a brief introduction on how to set up forchquad.

1.1 Prerequisites

torchquad is built with

* autoray, which means the implemented quadrature supports NumPy and can be used for machine learning with
modules such as PyTorch, JAX and Tensorflow, where it is fully differentiable

» conda, which will take care of all requirements for you

We recommend using conda, especially if you want to utilize the GPU. With PyTorch it will automatically set up CUDA
and the cudatoolkit for you, for example. Note that rorchquad also works on the CPU; however, it is optimized for GPU
usage. torchquad’s GPU support is tested only on NVIDIA cards with CUDA. We are investigating future support for
AMD cards through ROCm.

For a detailed list of required packages and packages for numerical backends, please refer to the conda environment
files environment.yml and environment_all_backends.yml. torchquad has been tested with JAX 0.2.25, NumPy 1.19.5,
PyTorch 1.10.0 and Tensorflow 2.7.0; other versions of the backends should work as well.

1.2 Installation

First, we must make sure we have torchquad installed. The easiest way to do this is simply to

conda install torchquad -c conda-forge

Alternatively, it is also possible to use

pip install torchquad

The PyTorch backend with CUDA support can be installed with

conda install "cudatoolkit>=11.1" "pytorch>=1.9=*cuda*" -c conda-forge -c.
—pytorch

Note that since PyTorch is not yet on conda-forge for Windows, we have explicitly included it here using -c pytorch.
Note also that installing PyTorch with pip may not set it up with CUDA support. Therefore, we recommend to use
conda.

Here are installation instructions for other numerical backends:



https://github.com/jcmgray/autoray
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conda install "tensorflow>=2.6.0=cuda*" -c conda-forge

pip install "jax[cuda]>=0.2.22" --find-links https://storage.googleapis.com/
—.jax-releases/jax_cuda_releases.html # Ilinux only

conda install "numpy>=1.19.5" -c conda-forge

More installation instructions for numerical backends can be found in environment_all_backends.yml and at the back-
end documentations, for example https://pytorch.org/get-started/locally/, https://github.com/google/jax/#installation
and https://www.tensorflow.org/install/gpu, and often there are multiple ways to install them.

1.3 Usage

Now you are ready to use forchquad. A brief example of how forchquad can be used to compute a simple integral can
be found on our GitHub. For a more thorough introduction, please refer to the tutorial.
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CHAPTER
TWO

TUTORIAL

torchquad is a dedicated module for numerical integration in arbitrary dimensions. This tutorial gives a more detailed
look at its functionality and explores some performance considerations.

2.1 Minimal working example

# To avoid copying things to GPU memory,

# ideally allocate everything in torch on the GPU
# and avoid non-torch function calls

import torch

from torchquad import MonteCarlo, set_up_backend

# Enable GPU support if available and set the floating point precision
set_up_backend("torch", data_type="float32")

# The function we want to integrate, in this example
# f(x0,x1) = sin(x0) + e+x1 for x0=[0,1] and x1=[-1,1]
# Note that the function needs to support multiple evaluations at once (first
# dimension of x here)
# Expected result here is ~3.2698
def some_function(x):
return torch.sin(x[:, 0]) + torch.exp(x[:, 1])

# Declare an integrator;
# here we use the simple, stochastic Monte Carlo integration method
mc = MonteCarlo()

# Compute the function integral by sampling 10000 points over domain
integral_value = mc.integrate(

some_function,

dim=2,

N=10000,

integration_domain=[[0, 1], [-1, 1]],

backend="torch",

To set the default logger verbosity, change the TORCHQUAD_LOG_LEVEL environment variable; for example export
TORCHQUAD_LOG_LEVEL=DEBUG. A later section in this tutorial shows how to choose a different numerical backend.
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2.2 Detailed Introduction

The main problem with higher-dimensional numerical integration is that the computation simply becomes too costly
if the dimensionality, n, is large, as the number of evaluation points increases exponentially - this problem is known as
the curse of dimensionality. This especially affects grid-based methods, but is, to some degree, also present for Monte
Carlo methods, which also require larger numbers of points for convergence in higher dimensions.

At the time, torchquad offers the following integration methods for abritrary dimensionality.

Name How it works Spac-
ing

Trapezoid Creates a linear interpolant between two neighbouring points Equal

rule

Simpson’s Creates a quadratic interpolant between three neighbouring point Equal

rule

Boole’s rule | Creates a more complex interpolant between five neighbouring points Equal

Gaussian Uses orthogonal polynomials to generate a grid of sample points along with correspond- | Un-

Quadrature | ing weights. A GaussLegendre implementation is provided as is a base Gaussian class | equal
that can be extended e.g., to other polynomials.

Monte Randomly chooses points at which the integrand is evaluated Ran-
Carlo dom
VEGAS Adaptive multidimensional Monte Carlo integration (VEGAS with adaptive stratified | Strati-
Enhanced sampling) fied
(VEGAS+) sam-
pling

2.3 Outline

This tutorial is a guide for new users to forchquad and is structured in the following way:
1. Example integration in one dimension (1-D) with PyTorch
2. Example integration in ten dimensions (10-D) with PyTorch
3. Some accuracy / runtime comparisons with scipy
4. Information on how to select a numerical backend
5. Example showing how gradients can be obtained w.r.t. the integration domain with PyTorch
6. Methods to speed up the integration
7. Custom Integrators

Feel free to test the code on your own computer as we go along.
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2.4 Imports

Now let’s get started! First, the general imports:

import scipy
import numpy as np

# For benchmarking
import time
from scipy.integrate import nquad

# For plotting
import matplotlib.pyplot as plt

# To avoid copying things to GPU memory,

# ideally allocate everything in torch on the GPU

# and avoid non-torch function calls

import torch

torch.set_printoptions(precision=10) # Set displayed output precision to 10 digits

from torchquad import set_up_backend # Necessary to enable GPU support

from torchquad import Trapezoid, Simpson, Boole, MonteCarlo, VEGAS # The available.
—,integrators

from torchquad.utils.set_precision import set_precision

import torchquad

# Use this to enable GPU support and set the floating point precision
set_up_backend("torch", data_type="float32")

2.5 One-dimensional integration

To make it easier to understand the methods used in this notebook, we will start with an example in one dimension.
If you are new to these methods or simply want a clearer picture, feel free to check out Patrick Walls’ nice Python
introduction to the Trapezoid rule and Simpson’s rule in one dimension. Similarly, Tirthajyoti Sarkar has made a nice
visual explanation of Monte Carlo integration in Python.

Let £(x) be the function f(x) = e® - x2. Over the domain [0, 2], the integral of £(x) is f02 f(z)dx = f02 e* - xdx =
2(e? — 1) = 12.7781121978613004544...

Let’s declare the function and a simple function to print the absolute error, as well as remember the correct result.

def f(x):
return torch.exp(x) * torch.pow(x, 2)
def print_error(result, solution):
print("Results:", result.item())
print(f"Abs. Error: {(torch.abs(result - solution).item()):.8e}")

print(f"Rel. Error: {(torch.abs((result - solution) / solution).item()):.8e}")

solution = 2 * (torch.exp(torch.tensor([2.0])) - 1)

2.4. Imports 7
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Note that we are using the torch versions of functions like ““exp" to ensure that all variables are and stay on the
GPU. Also, note: the unit imaginary number ¢ is written as j in Python.

Let’s plot the function briefly.

points = torch.linspace(0, 2, 100)

# Note that for plotting we have to move the values to the CPU first
plt.plot(points.cpu(), f(points).cpu())

plt.xlabel("$x$", fontsize=14)

plt.ylabel ("f($x$)", fontsize=14)

Let’s define the integration domain, set the precision to double, and initialize the integrator - let’s start with the trapezoid
rule.

# Integration domain is a list of lists to allow arbitrary dimensionality.
integration_domain = [[0, 2]]

# Initialize a trapezoid solver

tp = Trapezoid()

Now we are all set to compute the integral. Let’s try it with just 101 sample points for now.

result = tp.integrate(f, dim=1, N=101, integration_domain=integration_domain)
print_error(result, solution)

Output: Results: 12.780082702636719
Abs. Error: 1.97029114e-03
Rel. Error: 1.54192661e-04

This is quite close already, as 1-D integrals are comparatively easy. Let’s see what type of value we get for different
integrators.

simp = Simpson()
result = simp.integrate(f, dim=1, N=101, integration_domain=integration_domain)
print_error(result, solution)

Output: Results: 12.778112411499023
Abs. Error: 0.00000000e+00
Rel. Error: 0.00000000e+00

mc = MonteCarlo()
result = mc.integrate(f, dim=1, N=101, integration_domain=integration_domain)
print_error(result, solution)

Output: Results: 13.32831859588623
Abs. Error: 5.50206184e-01
Rel. Error: 4.30584885e-02

vegas = VEGASQ)
result = vegas.integrate(f, dim=1, N=101, integration_domain=integration_domain)
print_error(result, solution)

Output: Results: 21.83991813659668
Abs. Error: 9.06180573e+00
Rel. Error: 7.09166229e-01

Notably, Simpson’s method is already sufficient for a perfect solution here with 101 points. Monte Carlo methods do
not perform so well; they are more suited to higher-dimensional integrals. VEGAS currently requires a larger number
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of samples to function correctly (as it performs several iterations).

Let’s step things up now and move to a ten-dimensional problem.

2.6 High-dimensional integration

Now, we will investigate the following ten-dimensional problem:
Let £_2 be the function fo(x) = Zjil sin(z;).

Over the domain [0,1]'°, the integral of £_2 is fol...fol S0 sin(z) = 20sin(1/2) =
4.59697694131860282599063392557 . ..

Plotting this is tricky, so let’s directly move to the integrals.

def f 2(x):
return torch.sum(torch.sin(x), dim=1)

solution = 20 * (torch.sin(torch.tensor([0.5])) * torch.sin(torch.tensor([0.5])))

Let’s start with just 3 points per dimension, i.e., 3!° = 59, 049 sample points.

Note: forchquad currently only supports equal numbers of points per dimension. We are working on giving the user
more flexibility on this point.

# Integration domain is a list of lists to allow arbitrary dimensionality
integration_domain = [[0®, 1]] * 10
N =3 ** 10

tp = Trapezoid() # Initialize a trapezoid solver
result = tp.integrate(f_2, dim=10, N=N, integration_domain=integration_domain)
print_error(result, solution)

Output: Results: 4.500804901123047
Abs. Error: 9.61723328e-02
Rel. Error: 2.09207758e-02

simp = Simpson() # Initialize Simpson solver
result = simp.integrate(f_2, dim=10, N=N, integration_domain=integration_domain)
print_error(result, solution)

Output: Results: 4.598623752593994
Abs. Error: 1.64651871e-03
Rel. Error: 3.58174206e-04

boole = Boole() # Initialize Boole solver
result = boole.integrate(f_2, dim=10, N=N, integration_domain=integration_domain)
print_error(result,solution)

Output: Results: 4.596974849700928
Abs. Error: 2.38418579e-06
Rel. Error: 5.18642082e-07

2.6. High-dimensional integration 9
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mc = MonteCarlo()
result = mc.integrate(f_2, dim=10, N=N, integration_domain=integration_domain, seed=42)
print_error(result, solution)

Output: Results: 4.598303318023682
Abs. Error: 1.32608414e-03
Rel. Error: 2.88468727e-04

vegas = VEGASQ)
result = vegas.integrate(f_2, dim=10, N=N, integration_domain=integration_domain)
print_error(result, solution)

Output: Results: 4.598696708679199
Abs. Error: 1.71947479e-03
Rel. Error: 3.74044670e-04

Note that the Monte Carlo methods are much more competitive in this case. The bad convergence properties of the
trapezoid method are visible while Simpson’s and Boole’s rule are still OK given the comparatively smooth integrand.

If you have been repeating the examples from this tutorial on your own computer, you might get RuntimeError:
CUDA out of memory if you have a small GPU. In that case, you could also try to reduce the number of sample points
(e.g., 3 per dimension). You can really see the curse of dimensionality fully at play here, since 5'° = 9, 765, 625 but
310 = 59,049, reducing the number of sample points by a factor of 165. Note, however, that Boole’s method cannot
work for only 3 points per dimension, so the number of sample points is therefore automatically increased to 5 per
dimension for this method.

2.7 Comparison with scipy

Let’s explore how forchquad’s performance compares to scipy, the go-to tool for numerical integration. A more detailed
exploration of this topic might be done as a side project at a later time. For simplicity, we will stick to a 5-D version of
the sin(z) of the previous section. Let’s declare it with numpy and torch. NumPy arrays will remain on the CPU and
torch tensor on the GPU.

dimension = 5
integration_domain = [[0®, 1]] * dimension
ground_truth = 2 * dimension * np.sin(0.5) * np.sin(0.5)

def £ 3(x):
return torch.sum(torch.sin(x), dim=1)

def £ 3_np(*x):
return np.sum(np.sin(x))

Now let’s evaluate the integral using the scipy function nquad.

start = time.time()

opts = {"limit": 10, "epsabs": 1, "epsrel": 1}

result, _, details = nquad(f_3_np, integration_domain, opts=opts, full_output=True)
end = time.time()

print("Results:", result)

print("Abs. Error:", np.abs(result - ground_truth))

print(details)

print(£f"Took {(end - start) * 1000.0:.3f} ms")

10 Chapter 2. Tutorial
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Output: Results: 2.2984884706593016
Abs. Error: 0.0
{'neval': 4084101}
Took 33067.629 ms

Using scipy, we get the result in about 33 seconds on the authors’ machine (this might take shorter or longer on your
machine). The integral was computed with nquad, which on the inside uses the highly adaptive QUADPACK algorithm.

In any event, torchquad can reach the same accuracy much, much quicker by utilizing the GPU.

N = 37 ** dimension

simp = Simpson() # Initialize Simpson solver

start = time.time()

result = simp.integrate(f_3, dim=dimension, N=N, integration_domain=integration_domain)
end = time.time()

print_error(result, ground_truth)

print("neval=", N)

print(£f"Took {(end - start) * 1000.0:.3f} ms")

If you tried this yourself and ran out of CUDA memory, simply decrease N (this will, however, lead to a loss of
accuracy).

Note that we use more evaluation points (37° = 69,343,957 for torchquad vs. 4,084,101 for scipy), given the
comparatively simple algorithm. Anyway, the decisive factor for this specific problem is runtime. A comparison with
regard to function evaluations is difficult, as nquad provides no support for a fixed number of evaluations. This may
follow in the future.

The results from using Simpson’s rule in forchquad is:

Output: Results: 2.2984883785247803
Abs. Error: 0.00000000e+00
Rel. Error: 0.00000000e+00
neval= 69343957
Took 162.147 ms

In our case, tforchquad with Simpson’s rule was more than 300 times faster than scipy.integrate.nquad. We will
add more elaborate integration methods over time; however, this tutorial should already showcase the advantages of
numerical integration on the GPU.

Reasonably, one might prefer Monte Carlo integration methods for a 5-D problem. We might add this comparison to
the tutorial in the future.

2.8 Using different backends with torchquad

This section shows how to select a different numerical backend for the quadrature. Let’s change the minimal working
example so that it uses Tensorflow instead of PyTorch:

import tensorflow as tf
from torchquad import MonteCarlo, set_up_backend

# Enable Tensorflow's NumPy behaviour and set the floating point precision
set_up_backend("tensorflow", data_type="float32")

# The integrand function rewritten for Tensorflow instead of PyTorch
def some_function(x):

(continues on next page)
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(continued from previous page)

return tf.sin(x[:, 0]) + tf.exp(x[:, 1])

mc = MonteCarlo()
# Set the backend argument to "tensorflow" instead of "torch"
integral_value = mc.integrate(
some_function,
dim=2,
N=10000,
integration_domain=[[0®, 1], [-1, 1]1],
backend="tensorflow",

As the name suggests, the set_up_backend function configures a numerical backend so that it works with torchquad
and it optionally sets the floating point precision. For Tensorflow this means in our code it enables NumPy behaviour
and configures torchquad so that it uses float32 precision when initialising Tensors for Tensorflow. More details about
torchquad. set_up_backend() can be found in its documentation.

To calculate an integral with Tensorflow we changed the backend argument of the integrate method. An alternative
way to select Tensorflow as backend is to set the integration_domain argument to a tf.Tensor instead of a list.

The other code changes we did, for example rewriting the integrand, are not directly related to torchquad. To use
NumPy or JAX we would analogously need to change the two backend arguments to "numpy" resp. "jax" and rewrite
the integrand function.

2.9 Computing gradients with respect to the integration domain

torchquad allows fully automatic differentiation. In this tutorial, we will show how to extract the gradients with respect
to the integration domain with the PyTorch backend. We selected the composite Trapezoid rule and the Monte Carlo
method to showcase that getting gradients is possible for both deterministic and stochastic methods.

import torch
from torchquad import MonteCarlo, Trapezoid, set_up_backend

def test_function(x):
"""V shaped test function.
return 2 * torch.abs(x)

mirn

set_up_backend("torch", data_type="float64")
# Number of function evaluations
N = 10000

# Calculate a gradient with the MonteCarlo integrator

# Define the integrator

integrator_mc = MonteCarlo()

# Integration domain

domain = torch.tensor([[-1.0, 1.0]1)

# Enable the creation of a computational graph for gradient calculation.
domain.requires_grad = True

# Calculate the 1-D integral by using the previously defined test_function
# with MonteCarlo; set a RNG seed to get reproducible results

result_mc = integrator_mc.integrate(

(continues on next page)
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(continued from previous page)

test_function, dim=1, N=N, integration_domain=domain, seed=0
)
# Compute the gradient with a backward pass
result_mc.backward()
gradient_mc = domain.grad

# Calculate a gradient analogously with the composite Trapezoid integrator
integrator_tp = Trapezoid()
domain = torch.tensor([[-1.0, 1.0]])
domain.requires_grad = True
result_tp = integrator_tp.integrate(

test_function, dim=1, N=N, integration_domain=domain
)
result_tp.backward()
gradient_tp = domain.grad

# Show the results
print(f"Gradient result for MonteCarlo: {gradient_mc}")
print(f"Gradient result for Trapezoid: {gradient_tp}")

The code above calculates the integral for a 1-D test-function test_function() inthe [-1,1] domain and prints the gra-
dients with respect to the integration domain. The command domain.requires_grad = True enables the creation
of a computational graph, and it shall be called before calling the integrate(...) method. Gradients computation
is, then, performed calling result.backward(). The output of the print statements is as follows:

Gradient result for MonteCarlo: tensor([[-1.9828, 2.0196]1])
Gradient result for Trapezoid: tensor([[-2.0000, 2.0000]1])

2.10 Speedups for repeated quadrature

2.10.1 Compiling the integrate method

To speed up the quadrature in situations where it is executed often with the same number of points N, dimensionality
dim, and shape of the integrand (see the next section for more information on integrands), we can JIT-compile the
performance-relevant parts of the integrate method:

import time
import torch
from torchquad import Boole, set_up_backend

def example_integrand(x):
return torch.sum(torch.sin(x), dim=1)

set_up_backend("torch", data_type="float32")

N = 912673

dim = 3

integrator = Boole()

domains = [torch.tensor([[-1.0, y]] * dim) for y in range(5)]

(continues on next page)
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(continued from previous page)

# Integrate without compilation

times_uncompiled = []

for integration_domain in domains:
t0® = time.perf_counter()
integrator.integrate(example_integrand, dim, N, integration_domain)
times_uncompiled.append(time.perf_counter() - t0)

# Integrate with partial compilation

integrate_jit_compiled_parts = integrator.get_jit_compiled_integrate(
dim, N, backend="torch"

)

times_compiled_parts = []

for integration_domain in domains:
t0 = time.perf_counter()
integrate_jit_compiled_parts(example_integrand, integration_domain)
times_compiled_parts.append(time.perf_counter() - t0)

# Integrate with everything compiled
times_compiled_all = []
integrate_compiled = None
for integration_domain in domains:
t0 = time.perf_counter()
if integrate_compiled is None:
integrate_compiled = torch.jit.trace(
lambda dom: integrator.integrate(example_integrand, dim, N, dom),
(integration_domain,),
)
integrate_compiled(integration_domain)
times_compiled_all.append(time.perf _counter() - t0)

print(f"Uncompiled times: {times_uncompiled}")
print(f"Partly compiled times: {times_compiled_parts}")
print(£"All compiled times: {times_compiled_all}")
speedups = [

(1.0, tu / tcp, tu / tca)

for tu, tcp, tca in zip(times_uncompiled, times_compiled_parts, times_compiled_all)
]
print (f"Speedup factors: {speedups}")

This code shows two ways of compiling the integration. In the first case, we use integrator.
get_jit_compiled_integrate, which internally uses torch. jit.trace to compile performance-relevant code
parts except the integrand evaluation. In the second case we directly compile integrator.integrate. The function
created in the first case may be a bit slower, but it works even if the integrand cannot be compiled and we can re-use
it with other integrand functions. The compilations happen in the first iteration of the for loops and in the following
iterations the previously compiled functions are re-used.

With JAX and Tensorflow it is also possible to compile the integration. In comparison to compilation with PyTorch, we
would need to use jax.jit or tf.function instead of torch. jit.trace to compile the whole integrate method.
get_jit_compiled_integrate automatically uses the compilation function which fits to the numerical backend
There is a special case with JAX and MonteCarlo: If a function which executes the integrate method is compiled with
jax.jit, the random number generator’s current PRNGKey value needs to be an input and output of this function so
that MonteCarlo generates different random numbers in each integration. torchquad’s RNG class has methods to set
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and get this PRNGKey value.

The disadvantage of compilation is the additional time required to compile or re-compile the code, so if the integrate
method is executed only a few times or certain arguments, e.g. N, change often, the program may be slower overall.

2.10.2 Reusing sample points

With the MonteCarlo and composite Newton Cotes integrators it is possible to execute the methods for sample point
calculation, integrand evaluation and result calculation separately. This can be helpful to obtain a speedup in situations
where integration happens very often with the same integration_domain and N arguments. However, separate
sample point calculation has some disadvantages:

¢ The code is more complex.
* The memory required for the grid points is not released after each integration.
» With MonteCarlo the same sample points would be used for each integration, which corresponds to a fixed seed.

Here is an example where we integrate two functions with Boole and use the same sample points for both functions:

import torch
from torchquad import Boole

def integrandl(x):
return torch.sin(x[:, 0]) + torch.exp(x[:, 1])

def integrand2(x):
return torch.prod(torch.cos(x), dim=1)

# The integration domain, dimensionality and number of evaluations
# For the calculate_grid method we need a Tensor and not a list.
integration_domain = torch.Tensor([[0.0, 1.0], [-1.0, 1.0]1)

dim = 2

N = 9409

# Initialize the integrator

integrator = Boole()

# Calculate sample points and grid information for the result calculation
grid_points, hs, n_per_dim = integrator.calculate_grid(N, integration_domain)

# Integrate the first integrand with the sample points
function_values, _ = integrator.evaluate_integrand(integrandl, grid_points)
integrall = integrator.calculate_result(function_values, dim, n_per_dim, hs)

# Integrate the second integrand with the same sample points
function_values, _ = integrator.evaluate_integrand(integrand2, grid_points)

integral2 = integrator.calculate_result(function_values, dim, n_per_dim, hs)

print(f"Quadrature results: {integrall}, {integral2}")

2.10. Speedups for repeated quadrature 15
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2.11 Multidimensional/Vectorized Integrands

If you wish to evaluate many different integrands over the same domain, it may be faster to pass in a vectorized formu-
lation if possible. Our inspiration for this came from scipy’s own vectorization capabilities e.g., from its fixed_quad
method.

As an example, here we evaluate a similar integrand many times for different values of a and b. This is an example
that could be sped up by a vectorized evaluation of all integrals:

def parametrized_integrand(x, a, b):
return torch.sqrt(torch.cos(torch.sin((a + b) * x)))

a_params torch.arange (40)

b_params = torch.arange(10, 20)

integration_domain = torch.Tensor([[®, 1]1])

simp = Simpson()

result = torch.stack([torch.Tensor([simp.integrate(lambda x: parametrized_integrand(x, a,
— b), dim=1, N=101, integration_domain=integration_domain) for a in a_params]) for b in_
—b_params])

Now let’s see how to do this a bit more simply, and in a way that provides signficant speedup as the size of the integrand’s
grid grows:

grid = torch.stack([torch.Tensor([a + b for a in a_params]) for b in b_params])

def integrand(x):
return torch.sqrt(torch.cos(torch.sin(torch.einsum("i, jk->ijk", x.flatten(), grid))))

result_vectorized = simp.integrate(integrand, dim=1, N=101, integration_
—domain=integration_domain)

torch.all(torch.isclose(result_vectorized, result)) # True!

Note: VEGAS does not support multi-dimensional integrands. If you would like this, please consider opening an
issue or PR.

2.12 Custom Integrators

It is of course possible to extend our provided Integrators, perhaps for a special class of functions or for a new algorithm.

import scipy
from torchquad import Gaussian
from autoray import numpy as anp

class GaussHermite(Gaussian):

Gauss Hermite quadrature rule in torch, for integrals of the form :math: \\int_{-\\
winfty}A{+\\infty} er{-x4{2}} f(x) dx'. It will correctly integrate

polynomials of degree :math:2n - 1° or less over the interval

:math: [-\\infty, \\infty] with weight function :math: f(x) = e*{-x42} . See https://

(continues on next page)
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(continued from previous page)

—en.wikipedia.org/wiki/Gauss¥E2%80%93Hermite_quadrature

o

def __init__(self):
super().__init__Q
self.name = "Gauss-Hermite"
self._root_fn = scipy.special.roots_hermite

@staticmethod

def _apply_composite_rule(cur_dim_areas, dim, hs, domain):
"""Apply "composite" rule for gaussian integrals
cur_dim_areas will contain the areas per dimension
# We collapse dimension by dimension
for _ in range(dim):

cur_dim_areas = anp.sum(cur_dim_areas, axis=len(cur_dim_areas.shape) - 1)

return cur_dim_areas

gh=GaussHermite ()
integral=gh.integrate(lambda x: 1-x,dim=1,N=200) #integral from -inf to inf of np.exp(-
o (x*%2))*(1-x)

# Computed integral was 1.7724538509055168.
# analytic result = sqrt(pi)

2.12. Custom Integrators

17



torchquad, Release 0.4.0

18 Chapter 2. Tutorial



CHAPTER
THREE

INTEGRATION METHODS

This is the list of all available integration methods in forchquad.

We are continuously implementing new methods in our library. For the code behind the integration methods, please
see the code page or check out our full code and latest news at https://github.com/esa/torchquad.

Contents

* Integration methods
— Stochastic Methods
% Monte Carlo Integrator
* VEGAS Enhanced
— Deterministic Methods
* Boole’s Rule
% Simpson’s Rule

% Trapezoid Rule

* Gaussian Quadrature

3.1 Stochastic Methods

3.1.1 Monte Carlo Integrator

class torchquad.MonteCarlo

Monte Carlo integration

integrate (fi, dim, N=1000, integration_domain=None, seed=None, rng=None, backend=None)

Integrates the passed function on the passed domain using vanilla Monte Carlo Integration.
Parameters
¢ fn (func) - The function to integrate over.
e dim (int) — Dimensionality of the function’s domain over which to integrate.

* N (int, optional) — Number of sample points to use for the integration. Defaults to
1000.
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e integration_domain (list or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]*dim. It can also determine the numerical
backend.

* seed (int, optional)-Random number generation seed to the sampling point creation,
only set if provided. Defaults to None.

* rng (RNG, optional)-— Aninitialised RNG; this can be used when compiling the function
for Tensorflow

* backend (string, optional)— Numerical backend. Defaults to integration_domain’s
backend if it is a tensor and otherwise to the backend from the latest call to set_up_backend
or “torch” for backwards compatibility.

Raises
ValueError - If len(integration_domain) != dim

Returns
Integral value

Return type
backend-specific number

3.1.2 VEGAS Enhanced

class torchquad.VEGAS

VEGAS Enhanced. Refer to https://arxiv.org/abs/2009.05112 . Implementation inspired by https://github.com/
yewul030/CIGAR/ . EQ <n> refers to equation <n> in the above paper. JAX and Tensorflow are unsupported.
For Tensorflow there exists a VEGAS+ implementation called VegasFlow: https://github.com/N3PDF/vegasflow

integrate (fin, dim, N=10000, integration_domain=None, seed=None, rng=None, use_grid_improve=True,
eps_rel=0, eps_abs=0, max_iterations=20, use_warmup=True, backend=None)

Integrates the passed function on the passed domain using VEGAS.

If the integrand output is far away from zero, i.e. lies within [b, b+c] for a constant b with large absolute
value and small constant ¢, VEGAS does not adapt well to the integrand. Shifting the integrand so that it is
close to zero may improve the accuracy of the calculated integral in this case. This method does not support
multi-dimensional/vectorized integrands (i.e., integrating an integrand repeatedly over a grid of points).

Parameters
* fn (func) — The function to integrate over.
¢ dim (int) — Dimensionality of the function’s domain over which to integrate.

* N(int, optional)— Approximate maximum number of function evaluations to use for
the integration. This value can be exceeded if the vegas stratification distributes evaluations
per hypercube very unevenly. Defaults to 10000.

e integration_domain (1ist, optional) - Integration domain, e.g. [[-1,1],[0,1]]. De-
faults to [-1,1] dim.

* seed (int, optional) — Random number generation seed for the sampling point cre-
ation; only set if provided. Defaults to None.

e rng (RNG, optional) — An initialised RNG; this can be used as alternative to the seed
argument and to avoid problems with integrand functions which reset PyTorch’s RNG seed.

e use_grid_improve (bool, optional) - If True, improve the vegas map after each it-
eration. Defaults to True.

20
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eps_rel (float, optional) — Relative error to abort at. Defaults to 0.
eps_abs (float, optional)— Absolute error to abort at. Defaults to 0.

max_iterations (int, optional)- Maximum number of vegas iterations to perform.
The number of performed iterations is usually lower than this value because the number of
sample points per iteration increases every fifth iteration. Defaults to 20.

use_warmup (bool, optional) - If True, execute a warmup to initialize the vegas map.
Defaults to True.

backend (string, optional) - Numerical backend. “jax” and “tensorflow” are unsup-
ported. Defaults to integration_domain’s backend if it is a tensor and otherwise to the
backend from the latest call to set_up_backend or “torch” for backwards compatibility.

Raises
ValueError - If the integration_domain or backend argument is invalid

Returns
Integral value

Return type
backend-specific float

3.2 Deterministic Methods

3.2.1 Boole’s Rule

class torchquad.Boole

Boole’s rule. See https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas#Closed_Newton%E2%
80%93Cotes_formulas .

integrate (fin, dim, N=None, integration_domain=None, backend=None)

Integrates the passed function on the passed domain using Boole’s rule.

Parameters

fn (func) — The function to integrate over.
dim (int) — Dimensionality of the integration domain.

N (int, optional) — Total number of sample points to use for the integration. N has to
be such that NA(1/dim) - 1 % 4 == 0. Defaults to 5 points per dimension if None is given.

integration_domain (list or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]*dim. It can also determine the numerical
backend.

backend (string, optional)— Numerical backend. Defaults to integration_domain’s
backend if it is a tensor and otherwise to the backend from the latest call to set_up_backend
or “torch” for backwards compatibility.

Returns
Integral value

Return type
backend-specific number
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3.2.2 Simpson’s Rule

class torchquad.Simpson

Simpson’s rule. See https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas#Closed_Newton%
E2%80%93Cotes_formulas .

integrate (fin, dim, N=None, integration_domain=None, backend=None)
Integrates the passed function on the passed domain using Simpson’s rule.
Parameters
¢ fn (func) - The function to integrate over.
e dim (int) — Dimensionality of the integration domain.

* N(int, optional)- Total number of sample points to use for the integration. Should be
odd. Defaults to 3 points per dimension if None is given.

e integration_domain (Iist or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]*dim. It can also determine the numerical
backend.

* backend (string, optional)— Numerical backend. Defaults to integration_domain’s
backend if it is a tensor and otherwise to the backend from the latest call to set_up_backend
or “torch” for backwards compatibility.

Returns
Integral value

Return type
backend-specific number

3.2.3 Trapezoid Rule

class torchquad.Trapezoid

Trapezoidal rule. See https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas#Closed_Newton%
E2%80%93Cotes_formulas .

integrate (fin, dim, N=1000, integration_domain=None, backend=None)
Integrates the passed function on the passed domain using the trapezoid rule.
Parameters
 fn (func) — The function to integrate over.
e dim (int) — Dimensionality of the function to integrate.

e N(int, optional) — Total number of sample points to use for the integration. Defaults
to 1000.

e integration_domain (Iist or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]dim. It can also determine the numerical
backend.

¢ backend (string, optional)— Numerical backend. Defaults to integration_domain’s
backend if it is a tensor and otherwise to the backend from the latest call to set_up_backend
or “torch” for backwards compatibility.

Returns
Integral value
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Return type
backend-specific number

3.2.4 Gaussian Quadrature

class torchquad.Gaussian

Base method for Gaussian Quadrature. Different Gaussian methods should inherit from this class, and override
as necessary methods. Default behaviour is Gauss-Legendre quadrature on [-1,1] (i.e., this “parent” class should
__not__ be used directly with other integration domains, and for this parent class integration_domain as an
argument to integrate is ignored internally).

For an example of how to properly override the behavior to acheive different Gaussian Integration methods,
please see the Custom Integrators section of the Tutorial or the implementation of GaussLegendre.

The primary methods/attributes of interest to override are _root fn (for different polynomials, like
numpy.polynomial.legendre.leggauss), _apply_composite_rule (as in other integration methods), and _re-
size_roots (for handling different integration domains).

name

A human-readable name for the integral.

Type
str

_root_fn

A function that returns roots and weights like numpy.polynomial.legendre.leggauss.

Type

function

_root_args

a way of adding information to be passed into _root_fn as needed. This is then used when caching
roots/weights to potentially distinguish different calls to _root_fn based on arguments.

Type
tuple

_cache

a cache for roots and weights, used internally.

Type
dict

_resize_roots (integration_domain, roots)

Resize the roots based on domain of [a,b]. Default behavior is to simply return the roots, unsized by
integraton_domain.

Parameters
e integration_domain (backend tensor) - domain
» roots (backend tensor) — polynomial nodes

Returns
rescaled roots

Return type
backend tensor
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integrate (fin, dim, N=8, integration_domain=None, backend=None)

Integrates the passed function on the passed domain using a Gaussian rule (Gauss-Legendre on [-1,1] as a

default).

Parameters

fn (func) — The function to integrate over.
dim (int) — Dimensionality of the integration domain.

N (int, optional)- Total number of sample points to use for the integration. Should be
odd. Defaults to 3 points per dimension if None is given.

integration_domain (list or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]*dim. It also determines the numerical backend
if possible.

backend (string, optional) — Numerical backend. This argument is ignored if the
backend can be inferred from integration_domain. Defaults to the backend from the latest
call to set_up_backend or “torch” for backwards compatibility.

Returns
Integral value

Return type
backend-specific number

class torchquad.GaussLegendre

Gauss Legendre quadrature rule in torch for any domain [a,b]. See https://en.wikipedia.org/wiki/Gaussian_

quadrature#Gauss%oE2%80%93Legendre_quadrature.

Examples

>>> gl=torchquad.GaussLegendre()

>>> integral
—.domain=[[0

= gl.integrate(lambda x:np.sin(x), dim=1, N=101, integration_

,5]1]1) #integral from ® to 5 of np.sin(x)

| TQ-INFO| Computed integral was 0.7163378000259399 #analytic result = 1-np.cos(5)

integrate (fin, dim, N=8, integration_domain=None, backend=None)

Integrates the passed function on the passed domain using a Gaussian rule (Gauss-Legendre on [-1,1] as a

default).

Parameters

fn (func) — The function to integrate over.
dim (int) — Dimensionality of the integration domain.

N(int, optional)- Total number of sample points to use for the integration. Should be
odd. Defaults to 3 points per dimension if None is given.

integration_domain (list or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]*dim. It also determines the numerical backend
if possible.

backend (string, optional) — Numerical backend. This argument is ignored if the
backend can be inferred from integration_domain. Defaults to the backend from the latest
call to set_up_backend or “torch” for backwards compatibility.
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Returns
Integral value

Return type
backend-specific number
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CHAPTER
FOUR

ALL CONTENT

This is the list of all content in forchquad. The type backend tensor in the documentation is a placeholder for the tensor
type of the current numerical backend, for example numpy . array or torch.Tensor.

We are continuously implementing new content in our library. For the code, please see the code page or check out our
full code and latest news at https://github.com/esa/torchquad.

class torchquad.Baselntegrator
Bases: object

The (abstract) integrator that all other integrators inherit from. Provides no explicit definitions for methods.

static evaluate_integrand(fn, points, weights=None, args=None)

Evaluate the integrand function at the passed points
Parameters
e fn (function) - Integrand function
e points (backend tensor)— Integration points
* weights (backend tensor, optional) - Integration weights. Defaults to None.

e args (list or tuple, optional)- Any arguments required by the function. Defaults
to None.

Returns
Integrand function output int: Number of evaluated points

Return type
backend tensor

integrate()
class torchquad.Boole
Bases: NewtonCotes

Boole’s rule. See https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas#Closed_Newton%E2%
809%93Cotes_formulas .

integrate(fi, dim, N=None, integration_domain=None, backend=None)
Integrates the passed function on the passed domain using Boole’s rule.

Parameters
* fn (func) — The function to integrate over.

¢ dim (int) — Dimensionality of the integration domain.
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* N (int, optional) — Total number of sample points to use for the integration. N has to
be such that NA(1/dim) - 1 % 4 == 0. Defaults to 5 points per dimension if None is given.

e integration_domain (Iist or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]dim. It can also determine the numerical
backend.

¢ backend (string, optional)— Numerical backend. Defaults to integration_domain’s
backend if it is a tensor and otherwise to the backend from the latest call to set_up_backend
or “torch” for backwards compatibility.

Returns
Integral value

Return type
backend-specific number

class torchquad.GaussLegendre

Bases: Gaussian

Gauss Legendre quadrature rule in torch for any domain [a,b]. See https://en.wikipedia.org/wiki/Gaussian_
quadrature#Gauss%E2%80%93Legendre_quadrature.

Examples

>>> gl=torchquad.GaussLegendre()

>>> integral = gl.integrate(lambda x:np.sin(x), dim=1, N=101, integration_
—.domain=[[0,5]]) #integral from 0 to 5 of np.sin(x)

| TQ-INFO| Computed integral was 0.7163378000259399 #analytic result = 1-np.cos(5)

class torchquad.Gaussian
Bases: GridIntegrator
Base method for Gaussian Quadrature. Different Gaussian methods should inherit from this class, and override
as necessary methods. Default behaviour is Gauss-Legendre quadrature on [-1,1] (i.e., this “parent” class should

__not__ be used directly with other integration domains, and for this parent class integration_domain as an
argument to integrate is ignored internally).

For an example of how to properly override the behavior to acheive different Gaussian Integration methods,
please see the Custom Integrators section of the Tutorial or the implementation of GaussLegendre.

The primary methods/attributes of interest to override are _root_fn (for different polynomials, like
numpy.polynomial.legendre.leggauss), _apply_composite_rule (as in other integration methods), and _re-
size_roots (for handling different integration domains).

name

A human-readable name for the integral.

Type
str

_root_fn

A function that returns roots and weights like numpy.polynomial.legendre.leggauss.

Type

function
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_root_args

a way of adding information to be passed into _root_fn as needed. This is then used when caching
roots/weights to potentially distinguish different calls to _roor_fn based on arguments.

Type
tuple

_cache

a cache for roots and weights, used internally.

Type
dict

integrate (fin, dim, N=8, integration_domain=None, backend=None)

Integrates the passed function on the passed domain using a Gaussian rule (Gauss-Legendre on [-1,1] as a
default).

Parameters
* fn (func) — The function to integrate over.
e dim (int) — Dimensionality of the integration domain.

e N(int, optional) - Total number of sample points to use for the integration. Should be
odd. Defaults to 3 points per dimension if None is given.

e integration_domain (Iist or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]*dim. It also determines the numerical backend
if possible.

¢ backend (string, optional) — Numerical backend. This argument is ignored if the
backend can be inferred from integration_domain. Defaults to the backend from the latest
call to set_up_backend or “torch” for backwards compatibility.

Returns
Integral value

Return type
backend-specific number

class torchquad.GridIntegrator
Bases: BaseIntegrator

The abstract integrator that grid-like integrators (Newton-Cotes and Gaussian) integrators inherit from

calculate_grid(V, integration_domain, disable_integration_domain_check=False)
Calculate grid points, widths and N per dim

Parameters
* N (int) — Number of points
* integration_domain (backend tensor) - Integration domain

* disable_integration_domain_check (bool) — Disbaling integration domain checks
(default False)

Returns
Grid points backend tensor: Grid widths int: Number of grid slices per dimension

Return type
backend tensor
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calculate_result (**kwargs)

get_jit_compiled_integrate(dim, N=None, integration_domain=None, backend=None)

Create an integrate function where the performance-relevant steps except the integrand evaluation are JIT
compiled. Use this method only if the integrand cannot be compiled. The compilation happens when
the function is executed the first time. With PyTorch, return values of different integrands passed to the
compiled function must all have the same format, e.g. precision.

Parameters
e dim (int) — Dimensionality of the integration domain.

* N (int, optional) — Total number of sample points to use for the integration. See the
integrate method documentation for more details.

e integration_domain (Iist or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]*dim. It can also determine the numerical
backend.

* backend (string, optional)— Numerical backend. Defaults to integration_domain’s
backend if it is a tensor and otherwise to the backend from the latest call to set_up_backend
or “torch” for backwards compatibility.

Returns

JIT compiled integrate function where all parameters except the integrand and domain are
fixed

Return type
function(fn, integration_domain)

integrate (fi, dim, N, integration_domain, backend)

Integrate the passed function on the passed domain using a Composite Newton Cotes rule. The argument
meanings are explained in the sub-classes.

Returns
integral value

Return type
float

class torchquad.IntegrationGrid (N, integration_domain, grid_func=<function grid_func>,
disable_integration_domain_check=False)

Bases: object
This class is used to store the integration grid for methods like Trapezoid or Simpsons, which require a grid.
h = None
points = None
class torchquad.MonteCarlo
Bases: BaseIntegrator
Monte Carlo integration
calculate_result (**kwargs)
calculate_sample_points (N, integration_domain, seed=None, rng=None)
Calculate random points for the integrand evaluation

Parameters
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N (int) — Number of points
integration_domain (backend tensor)— Integration domain

seed (int, optional) — Random number generation seed for the sampling point cre-
ation, only set if provided. Defaults to None.

rng (RNG, optional)-— Aninitialised RNG; this can be used when compiling the function
for Tensorflow

Returns
Sample points

Return type
backend tensor

get_jit_compiled_integrate (dim, N=1000, integration_domain=None, seed=None, backend=None)

Create an integrate function where the performance-relevant steps except the integrand evaluation are JIT
compiled. Use this method only if the integrand cannot be compiled. The compilation happens when
the function is executed the first time. With PyTorch, return values of different integrands passed to the
compiled function must all have the same format, e.g. precision.

Parameters

dim (int) — Dimensionality of the integration domain.

N (int, optional) — Number of sample points to use for the integration. Defaults to
1000.

integration_domain (list or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]*dim. It can also determine the numerical
backend.

seed (int, optional)- Random number generation seed for the sequence of sampling
point calculations, only set if provided. The returned integrate function calculates different
points in each invocation with and without specified seed. Defaults to None.

backend (string, optional)— Numerical backend. Defaults to integration_domain’s
backend if it is a tensor and otherwise to the backend from the latest call to set_up_backend
or “torch” for backwards compatibility.

Returns
JIT compiled integrate function where all parameters except the integrand and domain are
fixed

Return type
function(fn, integration_domain)

integrate (fin, dim, N=1000, integration_domain=None, seed=None, rng=None, backend=None)

Integrates the passed function on the passed domain using vanilla Monte Carlo Integration.

Parameters

fn (func) — The function to integrate over.
dim (int) — Dimensionality of the function’s domain over which to integrate.

N (int, optional)— Number of sample points to use for the integration. Defaults to
1000.

integration_domain (list or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]*dim. It can also determine the numerical
backend.
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* seed(int, optional)-Random number generation seed to the sampling point creation,
only set if provided. Defaults to None.

* rng (RNG, optional)- Aninitialised RNG; this can be used when compiling the function
for Tensorflow

* backend (string, optional)— Numerical backend. Defaults to integration_domain’s
backend if it is a tensor and otherwise to the backend from the latest call to set_up_backend
or “torch” for backwards compatibility.

Raises
ValueError — If len(integration_domain) != dim

Returns
Integral value

Return type
backend-specific number

class torchquad.RNG(backend, seed=None, torch_save_state=False)
Bases: object

A random number generator helper class for multiple numerical backends

Notes
* The seed argument may behave differently in different versions of a numerical backend and when using
GPU instead of CPU
— https://pytorch.org/docs/stable/notes/randomness.html
— https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator

— https://www.tensorflow.org/api_docs/python/tf/random/Generator Only the Philox RNG guarantees
consistent behaviour in Tensorflow.

¢ Often uniform random numbers are generated in [0, 1) instead of [0, 1].
— numpy: random() is in [0, 1) and uniform() in [0, 1]

JAX: uniform() is in [0, 1)

torch: rand() is in [0, 1)

tensorflow: uniform() is in [0, 1)

jax_get_key(
Get the current PRNGKey. This function is needed for non-determinism when JIT-compiling with JAX.

jax_set_key (key)
Set the PRNGKey. This function is needed for non-determinism when JIT-compiling with JAX.

uniform(size, dtype)
Generate uniform random numbers in [0, 1) for the given numerical backend. This function is backend-
specific; its definitions are in the constructor.

Parameters
e size (1ist) — The shape of the generated numbers tensor

¢ dtype (backend dtype)— The dtype for the numbers, e.g. torch.float32
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Returns
A tensor with random values for the given numerical backend

Return type
backend tensor

class torchquad.Simpson

Bases: NewtonCotes

Simpson’s rule.

See https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas#Closed_Newton%
E2%80%93Cotes_formulas .

integrate (fin, dim, N=None, integration_domain=None, backend=None)

Integrates the passed function on the passed domain using Simpson’s rule.

Parameters

fn (func) — The function to integrate over.
dim (int) — Dimensionality of the integration domain.

N (int, optional)- Total number of sample points to use for the integration. Should be
odd. Defaults to 3 points per dimension if None is given.

integration_domain (list or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]dim. It can also determine the numerical
backend.

backend (string, optional)— Numerical backend. Defaults to integration_domain’s
backend if it is a tensor and otherwise to the backend from the latest call to set_up_backend
or “torch” for backwards compatibility.

Returns
Integral value

Return type
backend-specific number

class torchquad.Trapezoid

Bases: NewtonCotes

Trapezoidal rule.

E2%80%93Cotes_formulas .

integrate (fin, dim, N=1000, integration_domain=None, backend=None)

Integrates the passed function on the passed domain using the trapezoid rule.

Parameters

fn (func) — The function to integrate over.
dim (int) — Dimensionality of the function to integrate.

N (int, optional) — Total number of sample points to use for the integration. Defaults
to 1000.

integration_domain (list or backend tensor, optional) — Integration do-
main, e.g. [[-1,1],[0,1]]. Defaults to [-1,1]*dim. It can also determine the numerical
backend.

backend (string, optional)— Numerical backend. Defaults to integration_domain’s
backend if it is a tensor and otherwise to the backend from the latest call to set_up_backend
or “torch” for backwards compatibility.

See https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas#Closed_Newton%
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Returns
Integral value

Return type
backend-specific number

class torchquad.VEGAS

Bases: BaseIntegrator

VEGAS Enhanced. Refer to https://arxiv.org/abs/2009.05112 . Implementation inspired by https://github.com/
yewul030/CIGAR/ . EQ <n> refers to equation <n> in the above paper. JAX and Tensorflow are unsupported.
For Tensorflow there exists a VEGAS+ implementation called VegasFlow: https://github.com/N3PDF/vegasflow

integrate(fi, dim, N=10000, integration_domain=None, seed=None, rng=None, use_grid_improve=True,
eps_rel=0, eps_abs=0, max_iterations=20, use_warmup=True, backend=None)

Integrates the passed function on the passed domain using VEGAS.

If the integrand output is far away from zero, i.e. lies within [b, b+c] for a constant b with large absolute
value and small constant ¢, VEGAS does not adapt well to the integrand. Shifting the integrand so that it is
close to zero may improve the accuracy of the calculated integral in this case. This method does not support
multi-dimensional/vectorized integrands (i.e., integrating an integrand repeatedly over a grid of points).

Parameters
* fn (func) — The function to integrate over.
¢ dim (int) — Dimensionality of the function’s domain over which to integrate.

* N(int, optional)— Approximate maximum number of function evaluations to use for
the integration. This value can be exceeded if the vegas stratification distributes evaluations
per hypercube very unevenly. Defaults to 10000.

e integration_domain (1ist, optional) - Integration domain, e.g. [[-1,1],[0,1]]. De-
faults to [-1,1] dim.

* seed (int, optional) — Random number generation seed for the sampling point cre-
ation; only set if provided. Defaults to None.

e rng (RNG, optional) — An initialised RNG; this can be used as alternative to the seed
argument and to avoid problems with integrand functions which reset PyTorch’s RNG seed.

e use_grid_improve (bool, optional) — If True, improve the vegas map after each it-
eration. Defaults to True.

eps_rel (float, optional) — Relative error to abort at. Defaults to 0.

eps_abs (float, optional)— Absolute error to abort at. Defaults to 0.

e max_iterations (int, optional)- Maximum number of vegas iterations to perform.
The number of performed iterations is usually lower than this value because the number of
sample points per iteration increases every fifth iteration. Defaults to 20.

e use_warmup (bool, optional) - If True, execute a warmup to initialize the vegas map.
Defaults to True.

* backend (string, optional) - Numerical backend. “jax” and “tensorflow” are unsup-
ported. Defaults to integration_domain’s backend if it is a tensor and otherwise to the
backend from the latest call to set_up_backend or “torch” for backwards compatibility.

Raises
ValueError - If the integration_domain or backend argument is invalid
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Returns
Integral value

Return type
backend-specific float

torchquad. enable_cuda (data_type='float32")

This function sets torch’s default device to CUDA if possible. Call before declaring any variables! The default
precision can be set here initially, or using set_precision later.

Parameters
data_type ("float32", "float64" or None, optional) — Data type to use. If None,
skip the call to set_precision. Defaults to “float32”.

torchquad.plot_convergence (evals, fvals, ground_truth, labels, dpi=150)

Plots errors vs. function evaluations (fevals) and shows the convergence rate.
Parameters
* evals (list of np.array)- Number of evaluations, for each method a np.array of ints.
e fvals (list of np.array) - Function values for evals.
e ground_truth (np.array) — Ground truth values.
e labels (1ist) — Method names.
e dpi (int, optional) - Plot dpi. Defaults to 150.

torchquad.plot_runtime (evals, runtime, labels, dpi=150, y_axis_name='Runtime [s]")

Plots the runtime vs. function evaluations (fevals).
Parameters
* evals(list of np.array)-—Number of evaluations, for each method a np.array of fevals.

e runtime (1ist of np.array) - Runtime for evals.

labels (1ist)— Method names.
* dpi (int, optional) - Plot dpi. Defaults to 150.
* y_axis_name (str, optional) - Name for y axis. Deafults to “Runtime [s]”.

torchquad.set_log_level (log_level: str)

Set the log level for the logger. The preset log level when initialising Torchquad is the value of the
TORCHQUAD_LOG_LEVEL environment variable, or ‘WARNING’ if the environment variable is unset.

Parameters
log_level (str)— The log level to set. Options are “TRACE’, DEBUG’, ‘INFO’, ‘SUCCESS’,
‘WARNING’, ‘ERROR’, ‘CRITICAL’

torchquad.set_precision(data_type='float32', backend="torch")

This function allows the user to set the default precision for floating point numbers for the given numerical back-
end. Call before declaring your variables. NumPy and Tensorflow don’t have global dtypes: https://github.com/
numpy/numpy/issues/6860 https://github.com/tensorflow/tensorflow/issues/26033 Therefore, torchquad sets the
dtype argument for these two when initialising the integration domain.

Parameters

» data_type (string, optional)-Datatype to use, either “float32” or “float64”. Defaults
to “float32”.
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* backend (string, optional)— Numerical backend for which the data type is changed.
Defaults to “torch”.

torchquad. set_up_backend (backend, data_type=None, torch_enable_cuda=True)
Configure a numerical backend for torchquad.

With the torch backend, this function calls torchquad.enable_cuda unless torch_enable_cuda is False. With the
tensorflow backend, this function enables tensorflow’s numpy behaviour, which is a requirement for torchquad.
If a data type is passed, set the default floating point precision with torchquad.set_precision.

Parameters
* backend (string) — Numerical backend, e.g. “torch”

» data_type("float32", "float64" or None, optional)-Datatype whichispassed
to set_precision. If None, do not call set_precision except if CUDA is enabled for torch.
Defaults to None.

e torch_enable_cuda (Bool, optional) — If True and backend is “torch”, call en-
able_cuda. Defaults to True.

class torchquad.integration.newton_cotes.NewtonCotes

Bases: GridIntegrator
The abstract integrator that Composite Newton Cotes integrators inherit from

class torchquad.integration.base_integrator.BaseIntegrator
Bases: object

The (abstract) integrator that all other integrators inherit from. Provides no explicit definitions for methods.

static evaluate_integrand(fn, points, weights=None, args=None)
Evaluate the integrand function at the passed points

Parameters
* fn (function) — Integrand function
* points (backend tensor) — Integration points
* weights (backend tensor, optional) - Integration weights. Defaults to None.

* args (list or tuple, optional)-— Any arguments required by the function. Defaults
to None.

Returns
Integrand function output int: Number of evaluated points

Return type
backend tensor

integrate()
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FIVE

CONTACT INFORMATION

Created by ESA’s Advanced Concepts Team:
e Pablo Gémez - pablo.gomez (at) esa.int
* Gabriele Meoni - gabriele.meoni (at) esa.int
¢ Havard Hem Toftevaag - havard.hem.toftevaag (at) esa.int

Project Link: https://github.com/esa/torchquad.

5.1 Feedback

If you want to get in touch with the creators of torchquad, please send an email to pablo.gomez (at) esa.int.
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CHAPTER
SIX

CONTRIBUTING

The project is open to community contributions. Feel free to open an issue or write us an email if you would like to
discuss a problem or idea first.

If you want to contribute, please

1.
2.

a.

Fork the project on GitHub.
Get the most up-to-date code by following this quick guide for installing forchquad from source:
Get miniconda or similar

Clone the repo

git clone https://github.com/esa/torchquad.git

With the default configuration, all numerical backends with CUDA support are installed. If this should not
happen, comment out unwanted packages in environment.yml.

Set up the environment. This creates a conda environment called torchquad and installs the required depen-
dencies.

conda env create -f environment.yml
conda activate torchquad

Once the installation is done, then you are ready to contribute. Please note that PRs should be created from and into
the develop branch. For each release the develop branch is merged into main.

3.

Create your Feature Branch: git checkout -b feature/AmazingFeature

. Commit your Changes: git commit -m 'Add some AmazingFeature'

4
5.
6

Push to the Branch: git push origin feature/AmazingFeature

. Open a Pull Request on the develop branch, not main (NB: We autoformat every PR with black. Our GitHub

actions may create additional commits on your PR for that reason.)

and we will have a look at your contribution as soon as we can.

Furthermore, please make sure that your PR passes all automated tests. Review will only happen after that. Only PRs
created on the develop branch with all tests passing will be considered. The only exception to this rule is if you want to
update the documentation in relation to the current release on conda / pip. In that case you may ask to merge directly
into main.
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CHAPTER
SEVEN

ROADMAP

See the open issues for a list of proposed features (and known issues).
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CHAPTER
EIGHT

LICENSE

Distributed under the GPL-3.0 License. See LICENSE for more information.
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CHAPTER
NINE

INDICES AND TABLES

* genindex
* modindex

¢ search
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PYTHON MODULE INDEX

t

torchquad, 27
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